Parallel Outlier Detection for Streamed Data Using Non-Parameterized Approach

Author:

Markad Harshad Dattatray1,Sangve S. M.1

Affiliation:

1. Zeal College of Engineering and Research, Pune, India

Abstract

Outlier detection is used in various applications like detection of fraud, network analysis, monitoring traffic over networks, manufacturing and environmental software. The data streams which are generated are continuous and changing over time. This is the reason why it becomes nearly difficult to detect the outliers in the existing data which is huge and continuous in nature. The streamed data is real time and changes over time and hence it is impractical to store data in the data space and analyze it for abnormal behavior. The limitations in data space has led to the problem of real time analysis of data and processing it in FCFS basis. The results regarding the abnormal behavior have to be done very quickly and in a limited time frame and on an infinite set of data streams coming over the networks. To address the problem of detecting outliers on a real-time basis is a challenging task and hence has to be monitored with the help of the processing power used to design the graphics of any processing unit. The algorithm used in this paper uses a kernel function to accomplish the task. It produces timely outcome on high speed multi- dimensional data. This method increases the speed of outlier detection by 20 times and the speed goes on increasing with the increase with the number of data attributes and input data rate.

Publisher

IGI Global

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3