Detection of Mobile Phone Fraud Using Possibilistic Fuzzy C-Means Clustering and Hidden Markov Model

Author:

Subudhi Sharmila1,Panigrahi Suvasini2,Behera Tanmay Kumar1

Affiliation:

1. Veer Surendra Sai University of Technology, Sambalpur, India

2. Department of CSE and IT, Veer Surendra Sai University of Technology, Sambalpur, India

Abstract

This paper presents a novel approach for fraud detection in mobile phone networks by using a combination of Possibilistic Fuzzy C-Means clustering and Hidden Markov Model (HMM). The clustering technique is first applied on two calling features extracted from the past call records of a subscriber generating a behavioral profile for the user. The HMM parameters are computed from the profile, which are used to generate some profile sequences for training. The trained HMM model is then applied for detecting fraudulent activities on incoming call sequences. A calling instance is detected as forged when the new sequence is not accepted by the trained model with sufficiently high probability. The efficacy of the proposed system is demonstrated by extensive experiments carried out with Reality Mining dataset. Furthermore, the comparative analysis performed with other clustering methods and another approach recently proposed in the literature justifies the effectiveness of the proposed algorithm.

Publisher

IGI Global

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference43 articles.

1. International Call Fraud Detection Systems and Techniques

2. FCM: The fuzzy c-means clustering algorithm

3. Novel techniques for profiling and fraud detection in mobile telecommunications;P.Burge;Business Applications of Neural Networks,2000

4. Classification and Clustering in Biomedical Signal Processing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3