An Improved Web Page Recommendation Technique for Better Surfing Experience

Author:

Wagh Rajnikant Bhagwan1,Patil Jayantrao Bhaurao1

Affiliation:

1. Department of Computer Engineering, R. C. Patel Institute of Technology, Shirpur, India

Abstract

Recommendation systems are growing very rapidly. While surfing, users frequently miss the goal of their search and lost in information overload problem. To overcome this information overload problem, the authors have proposed a novel web page recommendation system to save surfing time of user. The users are analyzed when they surf through a particular web site. Authors have used relationship matrix and frequency matrix for effectively finding the connectivity among the web pages of similar users. These webpages are divided into various clusters using enhanced graph based partitioning concept. Authors classify active users more accurately to found clusters. Threshold values are used in both clustering and classification stages for more appropriate results. Experimental results show that authors get around 61% accuracy, 37% coverage and 46% F1 measure. It helps in improved surfing experience of users.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3