Affiliation:
1. Department of Computer Engineering, R. C. Patel Institute of Technology, Shirpur, India
Abstract
Recommendation systems are growing very rapidly. While surfing, users frequently miss the goal of their search and lost in information overload problem. To overcome this information overload problem, the authors have proposed a novel web page recommendation system to save surfing time of user. The users are analyzed when they surf through a particular web site. Authors have used relationship matrix and frequency matrix for effectively finding the connectivity among the web pages of similar users. These webpages are divided into various clusters using enhanced graph based partitioning concept. Authors classify active users more accurately to found clusters. Threshold values are used in both clustering and classification stages for more appropriate results. Experimental results show that authors get around 61% accuracy, 37% coverage and 46% F1 measure. It helps in improved surfing experience of users.