Constructing Temporal Equivalence Partitionings for Keyword Sets

Author:

Chundi Parvathi1,Subramaniam Mahadevan1

Affiliation:

1. Department of Computer Science, Peter Kiewit Institute, University of Nebraska-Omaha, Omaha, NE, USA

Abstract

Identifying keyword associations from text and search sources is often used to facilitate many tasks such as understanding relationships among concepts, extracting relevant documents, matching advertisements to web pages, expanding user queries, etc. However, these keyword associations change continually change with time. In this paper, the authors define an equivalence relationship among keywords and develop methods to construct a temporal view of the equivalence relationship by constructing optimal temporal equivalence partitionings for keyword sets. They describe efficient algorithms to construct an optimal temporal equivalence partitioning for a keyword pair. They use the fact that the equivalence relationship is transitive to extend these algorithms to obtain an optimal temporal equivalence partitioning for a larger set of keywords. The authors show the effectiveness of the approach by constructing the temporal equivalence partitionings of several sets of keywords from the Multi-Domain Sentiment data set and the ICWS2009 Spinn3r data set.

Publisher

IGI Global

Reference25 articles.

1. Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules in large databases. International Conference on Very Large Data Bases, 487-499. Apriori Implementation, http://www2.cs.uregina.ca/ hamilton/courses/831/notes/itemsets/itemset prog1.html

2. Extracting Named Entities and Synonyms from Wikipedia

3. The ICWSM 2009 Spinn3r data set.;K.Burton;International AAAI Conference on Weblogs and Social Media,2009

4. A Survey of Web Information Extraction Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3