Enhanced Twofold-LDA Model for Aspect Discovery and Sentiment Classification

Author:

Burns Nicola1,Bi Yaxin2,Wang Hui2,Anderson Terry2

Affiliation:

1. Genesys, Frimley, UK

2. Ulster University, Antrim, UK

Abstract

There is a need to automatically classify information from online reviews. Customers want to know useful information about different aspects of a product or service and also the sentiment expressed towards each aspect. This article proposes an Enhanced Twofold-LDA model (Latent Dirichlet Allocation), in which one LDA is used for aspect assignment and another is used for sentiment classification, aiming to automatically determine aspect and sentiment. The enhanced model incorporates domain knowledge (i.e., seed words) to produce more focused topics and has the ability to handle two aspects in at the sentence level simultaneously. The experiment results show that the Enhanced Twofold-LDA model is able to produce topics more related to aspects in comparison to the state of arts method ASUM (Aspect and Sentiment Unification Model), whereas comparable with ASUM on sentiment classification performance.

Publisher

IGI Global

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3