The Analysis of Enterprise Improvement in Global Commodity Price Prediction Based on Deep Learning
Author:
Affiliation:
1. Jiangsu University of Science and Technology, China
2. Guangzhou Xinhua University, China
3. Wenzhou Polytechnic, China
Abstract
The article expects to solve the traditional econometric statistical model, shallow machine learning algorithm, and many limitations in learning the nonlinear relationship of related indicators affecting commodity futures price trend. This article proposes a neural network commodity futures price prediction model by the mixture of convolutional neural networks (CNN) and gated recurrent unit (GRU). Firstly, the dimension reduction algorithm of multidimensional data by principal component analysis (PCA) is used. Through linear transformation, the original variables with correlation are transformed into a set of new linear irrelevant variables, and the high-dimensional time series data of commodity futures are reduced. Secondly, the variable features are extracted from the CNN network module in the CNN-GRU model, and the GRU network module learns the periodicity and trend of the original data. Finally, the full connection layer outputs the forecast results of commodity futures price.
Publisher
IGI Global
Subject
Information Systems and Management,Management Science and Operations Research,Strategy and Management,Computer Science Applications,Business and International Management
Reference44 articles.
1. Futures of sustainability as modernization, transformation, and control: a conceptual framework
2. A Novel PCA-Firefly Based XGBoost Classification Model for Intrusion Detection in Networks Using GPU
3. The Promises, Challenges, and Futures of Media Literacy
4. Dynamic relationship network and international management of enterprise supply chain by particle swarm optimization algorithm under deep learning
5. Environmental cost control system of manufacturing enterprises using artificial intelligence based on value chain of circular economy
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3