Affiliation:
1. Department of Computer Science and Software Engineering, Xi’an Jiaotong-Liverpool University, Suzhou, China
Abstract
The authors propose an incremental hyperplane partitioning approach to classification. Hyperplanes that are close to the classification boundaries of a given problem are searched using an incremental approach based upon Genetic Algorithm (GA). A new method - Incremental Linear Encoding based Genetic Algorithm (ILEGA) is proposed to tackle the difficulty of classification problems caused by the complex pattern relationship and curse of dimensionality. The authors solve classification problems through a simple and flexible chromosome encoding scheme, where the partitioning rules are encoded by linear equations rather than If-Then rules. Moreover, an incremental approach combined with output portioning and pattern reduction is applied to cope with the curse of dimensionality. The algorithm is tested with six datasets. The experimental results show that ILEGA outperform in both lower- and higher-dimensional problems compared with the original GA.
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献