Input Space Partitioning for Neural Network Learning

Author:

Guo Shujuan1,Guan Sheng-Uei1,Li Weifan2,Man Ka Lok2,Liu Fei3,Qin A. K.4

Affiliation:

1. School of Electronic & Information Engineering, Xi’an Jiaotong University, Suzhou, Jiangsu, China

2. Dept. of Computer Science and Software Engineering, Xi’an Jiaotong-Liverpool University, Suzhou, China

3. Department of Computer Science & Computer Engineering, La Trobe University, Melbourne, VIC, Australia

4. School of Computer Science and Information Technology, RMIT University, Melbourne, VIC, Australia

Abstract

To improve the learning performance of neural network (NN), this paper introduces an input attribute grouping based NN ensemble method. All of the input attributes are partitioned into exclusive groups according to the degree of inter-attribute promotion or correlation that quantifies the supportive interactions between attributes. After partitioning, multiple NNs are trained by taking each group of attributes as their respective inputs. The final classification result is obtained by integrating the results from each NN. Experimental results on several UCI datasets demonstrate the effectiveness of the proposed method.

Publisher

IGI Global

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference18 articles.

1. Dynamic Node Creation in Backpropagation Networks

2. Bahler, D., & Navarro, L. (2000). Methods for combining heterogeneous sets of classifiers. In Proceedings of the 17th National Conference on Artificial Intelligence (AAAI), Workshop on New Research Problems for Machine Learning.

3. Bagging predictors

4. Dietterich, T. (2000). Ensemble methods in machine learning. Multiple classifier systems, 1-15.

5. Fahlman, S. E., & Lebiere, C. (1989). The cascade-correlation learning architecture.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Output Grouping Based Approach to Multiclass Classification Using Support Vector Machines;Lecture Notes in Electrical Engineering;2016

2. Neural Incremental Attribute Learning in Groups;International Journal of Computational Intelligence Systems;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3