A Scheduling Model with Multi-Objective Optimization for Computational Grids using NSGA-II

Author:

Raza Zahid1,Vidyarthi Deo Prakash1

Affiliation:

1. Jawaharlal Nehru University, India

Abstract

Scheduling a job on the grid is an NP Hard problem, and hence a number of models on optimizing one or other characteristic parameters have been proposed in the literature. It is expected from a computational grid to complete the job quickly in most reliable grid environment owing to the number of participants in the grid and the scarcity of the resources available. Genetic algorithm is an effective tool in solving problems that requires sub-optimal solutions and finds uses in multi-objective optimization problems. This paper addresses a multi-objective optimization problem by introducing a scheduling model for a modular job on a computational grid with a dual objective, minimizing the turnaround time and maximizing the reliability of the job execution using NSGA – II, a GA variant. The cost of execution on a node is measured on the basis of the node characteristics, the job attributes and the network properties. Simulation study and a comparison of the results with other similar models reveal the effectiveness of the model.

Publisher

IGI Global

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum genetic algorithm based scheduler for batch of precedence constrained jobs on heterogeneous computing systems;Journal of Systems and Software;2018-01

2. An energy-efficient reliable grid scheduling model using NSGA-II;Engineering with Computers;2015-09-21

3. A Computational Grid Scheduling Model to Maximize Reliability Using Modified GA;Applications and Developments in Grid, Cloud, and High Performance Computing;2013

4. A Computational Grid Scheduling Model To Maximize Reliability Using Modified GA;International Journal of Grid and High Performance Computing;2011-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3