A Two-Stage Emotion Generation Model Combining CGAN and pix2pix

Author:

Wang Yuanqing1,Ghani Dahlan Abdul2,Zhou Bingqian3

Affiliation:

1. Zhoukou Normal University, China & City University, Malaysia

2. Malaysian Institute of Information Technology, University Kuala Lumpur, China

3. Zhoukou Normal University, China & Universiti Malaysia Sarawak, Malaysia

Abstract

Computer vision has made significant advancements in emotional design. Designers can now utilize computer vision to create emotionally captivating designs that deeply resonate with people. This article aims at enhancing emotional design selection by separating appearance and color. A two-stage emotional design method is proposed, which yields significantly better results compared to classical single-stage methods.. In the Radboud face dataset (RaFD), facial expressions primarily rely on appearance, while color plays a relatively smaller role. Therefore, the two-stage model presented in this article can focus on shape design. By utilizing the SSIM image quality evaluation index, our model demonstrates a 31.63% improvement in generation performance compared to the CGAN model. Additionally, the PSNR image quality evaluation index shows a 10.78% enhancement in generation performance. The proposed model achieves superior design results and introduces various design elements.This article exhibits certain improvements in design effectiveness and scalability compared to conventional models.

Publisher

IGI Global

Subject

Strategy and Management,Computer Science Applications,Human-Computer Interaction

Reference67 articles.

1. Towards principled methods for training generative adversarial networks;M.Arjovsky;Stat,2017

2. Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein GAN. Proceedings of ICML 2017. Research Gate.

3. Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein gan. arXiv preprint arXiv:1701.07875.

4. Casanova, A., & Careil, M. & Verbeek, J. (2021). Instance-Conditioned GAN. arXiv.2109.05070.

5. InfoGAN: Interpretable Representation Learning by information maximizing generative adversarial nets.;X.Chen;Advances in Neural Information Processing Systems,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3