Detecting Fake News Over Job Posts via Bi-Directional Long Short-Term Memory (BIDLSTM)

Author:

Divya T. V.1ORCID,Banik Barnali Gupta1ORCID

Affiliation:

1. Koneru Lakshmaiah Education Foundation (Deemed), Hyderabad, India

Abstract

Fake news detection on job advertisements has grabbed the attention of many researchers over past decade. Various classifiers such as Support Vector Machine (SVM), XGBoost Classifier and Random Forest (RF) methods are greatly utilized for fake and real news detection pertaining to job advertisement posts in social media. Bi-Directional Long Short-Term Memory (Bi-LSTM) classifier is greatly utilized for learning word representations in lower-dimensional vector space and learning significant words word embedding or terms revealed through Word embedding algorithm. The fake news detection is greatly achieved along with real news on job post from online social media is achieved by Bi-LSTM classifier and thereby evaluating corresponding performance. The performance metrics such as Precision, Recall, F1-score, and Accuracy are assessed for effectiveness by fraudulency based on job posts. The outcome infers the effectiveness and prominence of features for detecting false news. .

Publisher

IGI Global

Subject

Computer Science Applications,Education

Reference28 articles.

1. An Intelligent Model for Online Recruitment Fraud Detection

2. A machine learning approach to fake news detection using knowledge verification and natural language processing.;M. D.Ibrishimova;International Conference on Intelligent Networking and Collaborative Systems,2019

3. Zhou, X., Zafarani, R., Shu, K., & Liu, H. (2019). Fake news: Fundamental theories, detection strategies and challenges. Proceedings of the twelfth ACM international conference on web search and data mining, 836-837.

4. Khan, J. Y., Khondaker, M., Islam, T., Iqbal, A., & Afroz, S. (2019). A benchmark study on machine learning methods for fake news detection. arXiv preprint arXiv:1905.04749.

5. Detection of Online Fake News Using N-Gram Analysis and Machine Learning Techniques

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3