A New Sensor-Based Spatial OLAP Architecture Centered on an Agricultural Farm Energy-Use Diagnosis Tool

Author:

Bimonte Sandro1,Pradel Marilys2,Boffety Daniel2,Tailleur Aurelie3,André Géraldine2,Bzikha Rabi1,Chanet Jean-Pierre1

Affiliation:

1. Irstea, l'Unité Recherche Technologies et Systèmes d'information pour les Agrosystèmes (TSCF), Aubière, France

2. Irstea, l'Unité Recherche Technologies et Systèmes d'information pour les Agrosystèmes (TSCF), Montoldre, France

3. ARVALIS - Institut du végétal, Service Agronomie Economie Environnement La Jaillière, La Chapelle St Sauveur, France

Abstract

Agricultural energy consumption is an important environmental and social issue. Several diagnosis tools have been proposed to define indicators for analyzing the large-scale energy consumption of agricultural farm activities (year, farm, production activity, etc.). In Bimonte, Boulil, Chanet and Pradel (2012), the authors define (i) new appropriate indicators to analyze agricultural farm energy-use performance on a detailed scale and (ii) show how Spatial Data Warehouse (SDW) and Spatial OnLine Analytical Processing (SOLAP) GeoBusiness Intelligence (GeoBI) technologies can be used to represent, store, and analyze these indicators by simultaneously producing graphical and cartographic reports. These GeoBI technologies allow for the analysis of huge volumes of georeferenced data by providing aggregated numerical values visualized by means of interactive tabular, graphical, and cartographic displays. However, existing data collection systems based on sensors are not well adapted for agricultural data. In this paper, the authors show the global architecture of our GeoBI solution and highlight the data collection process based on agricultural ad hoc sensor networks, the associated transformation and cleaning operations performed by means of Spatial Extract Transform Load (ETL) tools, and a new implementation of the system using a web-services-based loosely coupled SOLAP architecture to provide interoperability and reusability of the complex multi-tier GeoBI architecture. Moreover, the authors detail how the energy-use diagnosis tool proposed in Bimonte, Boulil, Chanet and Pradel (2012) theoretically fits with the sensor data and the SOLAP approach.

Publisher

IGI Global

Subject

Modeling and Simulation,General Computer Science

Reference36 articles.

1. Abdullah, A., Brobst, S., Umer, M., & Khan, M. (2004). The case for an agri data warehouse: Enabling analytical exploration of integrated agricultural data. In Proceedings of International Conference on Databases and Applications 2004 (pp. 139-144). IASTED/ACTA Press.

2. Data mining a new pilot agriculture extension data warehouse.;A.Abdullah;Journal of Research and Practice in Information Technology,2006

3. A comparison of energy use in conventional and integrated arable farming systems in the UK

4. Fundamentals of spatial data warehousing for geographic knowledge discovery

5. Bimonte, S., Boulil, K., Chanet, J.-P., & Pradel, M. (2012). Definition and analysis of new agricultural farm energetic indicators using spatial OLAP. In Proceedings of International Conference on Computational Science and Its Applications 2012 (pp. 373-385). Lecture Notes in Computer Science, 7334, Springer.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3