A Modified Markov Based Maximum-entropy Model for POS Tagging of Odia Text

Author:

Abstract

POS (Parts of Speech) tagging, a vital step in diverse Natural Language Processing (NLP) tasks has not drawn much attention in case of Odia a computationally under-developed language. The proposed hybrid method suggests a robust POS tagger for Odia. Observing the rich morphology of the language and unavailability of sufficient annotated text corpus a combination of machine learning and linguistic rules is adopted in the building of the tagger. The tagger is trained on tagged text corpus from the domain of tourism and is capable of obtaining a perceptible improvement in the result. Also an appreciable performance is observed for news articles texts of varied domains. The performance of proposed algorithm experimenting on Odia language shows its manifestation in dominating over existing methods like rule based, hidden Markov model (HMM), maximum entropy (ME) and conditional random field (CRF).

Publisher

IGI Global

Subject

Modeling and Simulation,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine learning applied to tourism: A systematic review;WIREs Data Mining and Knowledge Discovery;2024-07-04

2. Leveraging Bidirectionl LSTM with CRFs for Pashto Tagging;ACM Transactions on Asian and Low-Resource Language Information Processing;2024-04-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3