A Semantic Knowledge-Based Framework for Information Extraction and Exploration

Author:

Aljamel Abduladem1ORCID,Osman Taha2,Thakker Dhavalkumar3

Affiliation:

1. Misurata University, Libya

2. Nottingham Trent University, UK

3. University of Bradford, UK

Abstract

The availability of online documents that describe domain-specific information provides an opportunity in employing a knowledge-based approach in extracting information from web data. This research proposes a novel comprehensive semantic knowledge-based framework that helps to transform unstructured data to be easily exploited by data scientists. The resultant sematic knowledgebase is reasoned to infer new facts and classify events that might be of importance to end users. The target use case for the framework implementation was the financial domain, which represents an important class of dynamic applications that require the modelling of non-binary relations. Such complex relations are becoming increasingly common in the era of linked open data. This research in modelling and reasoning upon such relations is a further contribution of the proposed semantic framework, where non-binary relations are semantically modelled by adapting the semantic reasoning axioms to fit the intermediate resources in the N-ary relations requirements.

Publisher

IGI Global

Subject

Modeling and Simulation,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3