SARCP - Exploiting Cyber-Attack Prediction Through Socially-Aware Recommendation

Author:

Abstract

In the domain of cyber security, the defence mechanisms of networks has traditionally been placed in a reactionary role. Cyber security professionals are therefore disadvantaged in a cyber-attack situation due to the fact that it is vital that they maneuver such attacks before the network is totally compromised. In this paper, we utilize the Betweenness Centrality network measure (social property) to discover possible cyber-attack paths and then employ computation of similar personality of nodes/users to generate predictions about possible attacks within the network. Our method proposes a social recommender algorithm called socially-aware recommendation of cyber-attack paths (SARCP), as an attack predictor in the cyber security defence domain. In a social network, SARCP exploits and delivers all possible paths which can result in cyber-attacks. Using a real-world dataset and relevant evaluation metrics, experimental results in the paper show that our proposed method is favorable and effective.

Publisher

IGI Global

Subject

Modeling and Simulation,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3