De-Identification of Unstructured Textual Data using Artificial Immune System for Privacy Preserving

Author:

Rahmani Amine1,Amine Abdelmalek1,Hamou Reda Mohamed1,Boudia Mohamed Amine1,Bouarara Hadj Ahmed2ORCID

Affiliation:

1. Department of Computer Science, Dr. Tahar Moulay University of Saida, Saida, Algeria

2. GeCoDe laboratory, Department of Computer Sciences, Dr. Tahar Moulay University of Saida, Algeria

Abstract

The development of new technologies has led the world into a tipping point. One of these technologies is the big data which made the revolution of computer sciences. Big data has come with new challenges. These challenges can be resumed in the aim of creating scalable and efficient services that can treat huge amounts of heterogeneous data in small scale of time while preserving users' privacy. Textual data occupy a wide space in internet. These data could contain information that can lead to identify users. For that, the development of such approaches that can detect and remove any identifiable information has become a critical research area known as de-identification. This paper tackle the problem of privacy in textual data. The authors' proposed approach consists of using artificial immune systems and MapReduce to detect and hide identifiable words with no matter on their variants using the personnel information of the user from his profile. After many experiments, the system shows a high efficiency in term of number of detected words, the way they are hided with, and time of execution.

Publisher

IGI Global

Subject

Modeling and Simulation,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cybersecurity risk analysis model using fault tree analysis and fuzzy decision theory;International Journal of Information Management;2018-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3