Generation of Unusual Plasma Discharge Video by Generative Adversarial Network

Author:

Ngan Tran Vo Khanh1,Hochin Teruhisa1,Nomiya Hiroki1,Nakanishi Hideya2ORCID,Shoji Mamoru2

Affiliation:

1. Kyoto Institute of Technology, Japan

2. National Institute for Fusion Science, Japan

Abstract

In nuclear fusion experiments in large helical device (LHD), a lot of videos containing the images of plasma discharge are recorded. An observation of the recorded images of plasma light emission can lead to a new discovery or help to optimize the operational parameters for the experiment. An unusual plasma discharge, which may cause damage to the device, is expected to be foreseen through a prediction method. Due to the shortage of videos having such unusual emissions, the generation of more videos having similar phenomenon is required. However, video generation is a very challenging issue as the videos should have not only similarity in features in the real one but also a plausibility in frame-by-frame transition, especially in the case of plasma discharges. Thus, this paper proposes a method to generate a video containing plasma light emission using generative adversarial network (GAN). It has been confirmed that the proposed generative model can produce a new video having plasma light emission with a very smooth frame transition.

Publisher

IGI Global

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Computer Science Applications,Software

Reference21 articles.

1. Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset

2. The Fréchet distance between multivariate normal distributions

3. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. In Advances in neural information processing systems (Vol. 2, pp. 2672–2680). MIT Press.

4. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., & Hochreiter, S. (2017). Gans trained by a two time-scale update rule converge to a local Nash equilibrium. In Proceedings of the 31st International Conference on Neural Information Processing Systems (pp.6626-6637). Academic Press.

5. Jahanian, A., Chai, L., & Isola, P. (2020). On the “steerability” of generative adversarial networks. arXiv.org. Retrieved December 28, 2021, from https://arxiv.org/abs/1907.07171

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3