Enhanced Frequent Itemsets Based on Topic Modeling in Information Filtering

Author:

Wai Than Than1,Aung Sint Sint1

Affiliation:

1. University of Computer Studies, Mandalay, Myanmar

Abstract

In order to generate user's information needs from a collection of documents, many term-based and pattern-based approaches have been used in Information Filtering. In these approaches, the documents in the collection are all about one topic. However, user's interests can be diverse and the documents in the collection often involve multiple topics. Topic modeling is useful for the area of machine learning and text mining. It generates models to discover the hidden multiple topics in a collection of documents and each of these topics are presented by distribution of words. But its effectiveness in information filtering has not been so well explored. Patterns are always thought to be more discriminative than single terms for describing documents. The major challenge found in frequent pattern mining is a large number of result patterns. As the minimum threshold becomes lower, an exponentially large number of patterns are generated. To deal with the above mentioned limitations and problems, in this paper, a novel information filtering model, EFITM (Enhanced Frequent Itemsets based on Topic Model) model is proposed. Experimental results using the CRANFIELD dataset for the task of information filtering show that the proposed model outperforms over state-of-the-art models.

Publisher

IGI Global

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Computer Science Applications,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3