Increasing the Accuracy of Software Fault Prediction using Majority Ranking Fuzzy Clustering

Author:

Abaei Golnoush1,Selamat Ali2

Affiliation:

1. University Technology Malaysia, Johor, Malaysia

2. UTM-IRDA Digital Media Centre, K-Economy Research Alliance UTM & University Technology Malaysia, Johor, Malaysia

Abstract

Despite proposing many software fault prediction models, this area has yet to be explored as still there is a room for stable and consistent model with better performance. In this paper, a new method is proposed to increase the accuracy of fault prediction based on the notion of fuzzy clustering and majority ranking. The authors investigated the effect of irrelevant and inconsistent modules on software fault prediction and tried to decrease it by designing a new framework, in which the entire project modules are clustered. The obtained results showed that fuzzy clustering could decrease the negative effect of irrelevant modules on prediction performance. Eight data sets from NASA and Turkish white-goods software is employed to evaluate our model. Performance evaluation in terms of false positive rate, false negative rate, and overall error showed the superiority of our model compared to other predicting models. The authors proposed majority ranking fuzzy clustering approach showed between 3% to 18% and 1% to 4% improvement in false negative rate and overall error, respectively, compared with other available proposed models (ACF and ACN) in more than half of the testing cases. According to the results, our systems can be used to guide testing effort by identifying fault prone modules to improve the quality of software development and software testing in a limited time and budget.

Publisher

IGI Global

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Computer Science Applications,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data quality issues in software fault prediction: a systematic literature review;Artificial Intelligence Review;2022-12-21

2. A fuzzy logic expert system to predict module fault proneness using unlabeled data;Journal of King Saud University - Computer and Information Sciences;2020-07

3. Developer Experience Considering Work Difficulty in Software Development;International Journal of Networked and Distributed Computing;2018

4. Heuristic Test Case Generation Technique Using Extended Place/Transition Nets;Applied Computing & Information Technology;2017-07-15

5. Formalization of Expert Knowledge About the Usability of Web Pages Based on User Criteria Aggregation;International Journal of Software Innovation;2016-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3