Artificial Intelligence and the Future of Renewable Energy

Author:

Kumar Niraj1,Katiyar Amit1,Ompal 1

Affiliation:

1. School of Engineering and Technology, CSJM University, Kanpur, India

Abstract

This chapter explores the application of multi-layer feed-forward artificial neural networks (ANNs) in forecasting solar photovoltaic (PV) power generation. Emphasising the growing need for reliable energy sources amidst escalating demands, it delves into integrating renewable energy into the electric grid, a priority for sustainable development. By leveraging historical data and employing backpropagation training algorithms, the chapter demonstrates how ANNs can enhance the accuracy of solar PV power forecasts. This advancement is critical for grid management, allowing for better planning, scheduling, and optimisation of energy resources. The methodology involves data preprocessing, model training, and performance evaluation using root mean square error (RMSE) and correlation coefficients, employing MATLAB for simulation. The chapter asserts that ANN-based models surpass traditional forecasting methods, offering robust and efficient solutions for the renewable energy sector.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3