Spacecraft Charging in Non-Maxwellian Plasmas at GEO Altitudes

Author:

Ali Shahid1ORCID

Affiliation:

1. National Centre for Physics, Pakistan

Abstract

Spacecraft charging phenomenon at GEO altitudes is revisited by highlighting various spacecraft missions, spacecraft orbits, surface charge mitigating techniques, and particle distribution models. A comparative analysis is presented to study the onset of negative charging for spacecraft with single Maxwellian, Kappa, and q-nonextensive distributions. Since the plasma constitutes a mixture of two clouds having cold and hot electrons with their distinct thermal energies and densities, therefore it is important to investigate surface charging with double extensive and non-extensive distributions as well as analyzing the current-balance equations (CBEs) both analytically and numerically. The Whittaker function integral is employed to solve the power-law integrals. The q-distributed electrons show more pronounced energy tails to obey Tsallis statistics having nonstationary equilibrium states. Non-extensivity effect strongly modifies the CBE for spacecraft charging, supporting better in the limit q<1 in contrast to Maxwell and κ distributions. Numerically critical and anticritical thresholds are also identified to understand the onset of negative charging of various space-grade materials.

Publisher

IGI Global

Reference42 articles.

1. Boon, J. P., & Tsallis, C. (2005). Special issue overview Nonextensive statistical mechanics: new trends, new perspectives. Europhysics News, 36(6), 185-186.

2. Interactions of Rapidly Moving Bodies in Terrestrial Atmosphere

3. The “Puck” energetic charged particle detector: Design, heritage, and advancements

4. Cooper, R., Cowardin, H., Engelhar, D., Plis, E., & Hoffman, R. (2017, September). Space Weathering Experiments on Spacecraft Materials. In Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) (No. JSC-CN-39072).

5. Spacecraft charging at synchronous orbit

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3