Digital Twin-Based Crop Yield Prediction in Agriculture

Author:

Rajeswari D.1ORCID,Venkatachalam Parthiban Athish2ORCID,Ponnusamy Sivaram3ORCID

Affiliation:

1. Department of Data Science and Business Systems, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, India

2. Clemson University, USA

3. Sandip University, Nashik, India

Abstract

This chapter explores the transformative integration of digital twin technology and drone-based solutions in agriculture, focusing on the innovative Digital Twin Empowered Drones (DTEDs) system for predicting crop yields. The chapter delineates the workflow involving continuous data collection from IoT-based sensors and drones, feeding into a digital twin model, and utilizing advanced AI algorithms like YOLO V7 for real-time analysis. The system aims to enhance predictive capabilities, optimize resource utilization, monitor crop health, and provide data-driven decision support. Results indicate a remarkable prediction accuracy of 91.69%, showcasing the system's potential to revolutionize agriculture, empower farming communities, and contribute to global food security. The chapter concludes by outlining potential future enhancements and advancements, positioning the digital twin-based crop yield prediction system as a significant stride towards efficient and sustainable agricultural practices.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3