Overview of Federated Learning and Its Advantages

Author:

Kakkar Alisha1,Kumar Sudesh1

Affiliation:

1. Banasthali Vidyapith, India

Abstract

Federated learning (FL) is closely linked to decentralized education. A decentralized system primarily targets expediting the operation phase, whereas federated learning concentrates on constructing a cooperative prototype devoid of privacy disclosure. Some of the most notable and frequently utilized FL-driven applications include Android's Keyboard for smart typing assistance and Google Virtual Assistant. FL can address data distributed across rows based on specimens and data spread across columns based on features in a cooperative training environment. This chapter explores the fundamental principles of FL, elucidating its foundational technologies and structures. In this chapter, categorization and its utilization for market scenarios in the fields of data analytics, medical care, learning, and business are examined. This chapter also pinpoints research forefronts to tackle federated learning and contribute to progressing our comprehension of Federated Learning for forthcoming enhancement.

Publisher

IGI Global

Reference41 articles.

1. IOTFLA : A Secured and Privacy-Preserving Smart Home Architecture Implementing Federated Learning

2. Balta, D., Sellami, M., Kuhn, P., Schöpp, U., Buchinger, M., Baracaldo, N., . . .. (2021). Accountable federated machine learning in government: Engineering and management insights. In International conference on electronic participation (pp. 125–138). Springer.

3. Chen, Y., Ning, Y., & Rangwala, H. (2019). Asynchronous online federated learning for edge devices. ArXiv:1911.02134 [Cs]. Retrieved from http://arxiv.org/abs/1911.02134

4. Cheng, K., Fan, T., Jin, Y., Liu, Y., Chen, T., & Yang, Q. (2019). SecureBoost: A lossless federated learning framework.ArXiv:1901.08755 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1901.08755

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3