Data Visualization Techniques in Smart Agriculture Implementation

Author:

Kumari Shabnam1,Pandey Gaurav Kumar2ORCID,Tiwari Shrikant3ORCID

Affiliation:

1. SRM Institute of Science and Technology, Kattankulathur, Chennai, India

2. Hindustan College of Science and Technology, India

3. Galgotias University, Greater Noida, India

Abstract

In recent years, data visualization techniques play an important role in the implementation of smart agriculture systems, enabling farmers and stakeholders to make informed decisions based on the analysis of complex agricultural data. This chapter presents an overview of various data visualization techniques and their applications in the context of smart agriculture. The authors discuss key visualization methods such as charts, graphs, maps, etc., highlighting their effectiveness in representing agricultural data in a meaningful and actionable way. This chapter explores the use of data visualization techniques in different stages of the agricultural process, including crop monitoring, weather forecasting, soil analysis, and yield prediction. We discuss how visualizations can help farmers understand and interpret large volumes of data collected from sensors, drones, and satellite imagery, allowing them to identify patterns, trends, and anomalies. Furthermore, the authors explore the integration of data visualization techniques with advanced technologies like machine learning and artificial intelligence.

Publisher

IGI Global

Reference27 articles.

1. An Useful Survey on Supervised Machine Learning Algorithms: Comparisons and Classifications

2. Visualization and analysis of precision agriculture data: A review.;A. A.Alesheikh;Journal of Applied Remote Sensing,2016

3. Geovisualization techniques for precision agriculture: A review and classification.;A. M.Alshammari;International Journal of Advanced Computer Science and Applications,2020

4. Data visualization techniques for precision agriculture: A systematic review.;S. H.Baek;Sustainability,2019

5. Data visualization in agriculture: A systematic literature review.;C. F.Chen;Computers and Electronics in Agriculture,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data Collection and Statistical Analysis Methods in Sensor-Based Healthcare;Advances in Medical Technologies and Clinical Practice;2024-05-28

2. Data Analytics in Digital Agriculture;SpringerBriefs in Agriculture;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3