Skin Lesion Detection

Author:

Jain Ayushi1,Mittal Neha1,Hanmandlu Madasu2,Pandey Arvind3ORCID

Affiliation:

1. Meerut Institute of Engineering and Technology, India

2. MVSR Engineering College, India

3. Buddha Institute of Technology, GIDA, Gorakhpur, India

Abstract

In recent times, various imaging methods and deep learning models have been utilized for identification and analyzation of pigmented lesion images. Clinical and pathological methods of recognizing skin tumors are difficult, time consuming, painful, and expensive. In order to address this problem, many computers aided systems were developed and they achieved great success in detecting several lesions. Owing to the complex behavior of skin lesion images the identification of lesions is still challenging. The identification of skin cancer is making major advances by using the improved CAD models. This study presents an asystematic review of the advances made in each step of a CAD based on deep learning. These steps include pre-processing, segmenting, extracting features, classification, and the state of art approaches used in them. The existing models and the publicly available databases that involve both macroscopic and dermoscopic images are also discussed.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3