Machine Learning Algorithms for Predictive Pest Modeling

Author:

Sial Muhammad Umair1ORCID,Khan Rashad Rasool1,Ahmed Rizwan1,Abdin Zain ul1,Ummara Umm E.2

Affiliation:

1. Department of Entomology, University of Agriculture, Faisalabad, Pakistan

2. Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan

Abstract

Effective management of crop pests is crucial due to their detrimental impact on productivity. Therefore, it is imperative to prioritize early detection and prevention strategies. Machine learning methodology is being employed to forecast crop pests by utilizing data from different modalities. The utilization of machine learning applications is significantly influencing the worldwide economy through the alteration of data processing techniques and decision-making processes. It devises effective techniques for automatically detecting, identifying, and forecasting pests and diseases in agricultural crops. The objective of this chapter is to enhance the advancement of smart farming and precision agriculture by advocating for the development of techniques that enable farmers to enhance the quality and yield of their crops.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3