Cloud-Based IoT Data Warehousing Technology for E-Healthcare

Author:

Onyebuchi Amaonwu1,Matthew Ugochukwu Okwudili2ORCID,Kazaure Jazuli Sanusi3ORCID,Ebong Godwin Nse4ORCID,Ndukwu Charles Chinonso5,Nwanakwaugwu Andrew Chinonso4ORCID,Okey Ogobuchi Daniel6ORCID

Affiliation:

1. Computer Science, Hussaini Adamu Federal Polytechnic, Nigeria

2. Hussaini Adamu Federal Polytechnic, Nigeria

3. Electrical Electronics Engineering, Hussaini Adamu Federal Polytechnic, Nigeria

4. Data Science Department, University of Salford, UK

5. Mechanical Engineering, Michael Okpara University of Agriculture, Umudike, Nigeria

6. Computer Engineering, Michael Okpara University of Agriculture, Umudike, Nigeria

Abstract

This chapter concentrated on the digital economy evolution with particular emphasis on the electronic healthcare (e-healthcare) cloud enterprise data warehouse design. The research was inspired to provide a high-level technology computing framework for the development of health grid ecosystem for e-healthcare data flow implementation. The chapter provided a detailed discussions on how clinic data warehousing in combination with data mining techniques can improve various aspects of healthcare sector and health information and highlight the numbers of critical issues in the implementation of e-healthcare delivery. The research modelled an e-healthcare digital ecosystem for clinical record federation and provided gateway for accessibility to distinctive stakeholders in the e-healthcare system supply chain that concentrated on distribution of medical information required for healthcare analysis across the biomedical spectrum from public health to patient care through the development of cloud enterprise data warehouse technology in line with digital society extreme automation.

Publisher

IGI Global

Reference43 articles.

1. An empirical study on data warehouse systems effectiveness: The case of Jordanian banks in the business intelligence era.;A.Al-Okaily;EuroMed Journal of Business,2022

2. Data Mining Algorithms for Knowledge Extraction

3. AwotundeJ. B.AdeniyiA. E.AjagbeS. A.González-BrionesA. (2022). Natural computing and unsupervised learning methods in smart healthcare data-centric operations Cognitive and Soft Computing Techniques for the Analysis of Healthcare Data. Elsevier.

4. Distributing relational model transformation on MapReduce

5. A Comparative Study of Business Intelligence and Artificial Intelligence with Big Data Analytics.;J. P.Bharadiya;American Journal of Artificial Intelligence,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3