Unraveling the Complexity of Thyroid Cancer Prediction

Author:

Joshi Hemlata1,Vijayalakshmi A.1,George Sneha Maria1

Affiliation:

1. Christ University, India

Abstract

Despite being relatively rare, thyroid cancer is being identified more often as a result of improved awareness and detection. Even if it has a high survival rate, it is crucial to comprehend its forms, risk factors, and therapies. Better results and prompt intervention are made possible by the early detection of thyroid cellular alterations made possible by evolving machine learning (ML) techniques. The USA Cancer Data Access System's Thyroid Cancer Factor Data, gathered from patient questionnaires, are used in this study. Missing values and imbalance in the dataset are addressed using resampling techniques (SMOTE, under-sampling) and imputation techniques (Median, KNN). To increase the accuracy of thyroid cancer prediction and improve early identification and prognoses for improved patient care, a comparative analysis of machine learning algorithms (ML) (Logistic Regression, LDA, KNN, Decision Tree, SVM, Naive Bayes) with imputation and resampling techniques is being conducted.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3