Leveraging Unsupervised Machine Learning to Optimize Customer Segmentation and Product Recommendations for Increased Retail Profits

Author:

Upreti Gehna1,Natarajan Arul Kumar2ORCID

Affiliation:

1. Christ University, India

2. Samarkand International University of Technology, Uzbekistan

Abstract

The retail sector's success hinges on understanding and responding adeptly to diverse consumer behaviours and preferences. In this context, the burgeoning volume of transactional data has underscored the need for advanced analytical methodologies to extract actionable insights. This research delves into the realm of unsupervised machine learning techniques within retail analytics, specifically focusing on customer segmentation and the subsequent recommendation strategy based on clustered preferences. The purpose of this study is to determine which unsupervised machine learning clustering algorithms perform best for segmenting retail customer data to improve marketing strategies. Through a comprehensive comparative analysis, this study explores the performance of multiple algorithms, aiming to identify the most suitable technique for retail customer segmentation. Through this segmentation, the study aims not only to discern and profile varied customer groups but also to derive actionable recommendations tailored to each cluster's preferences and purchasing patterns.

Publisher

IGI Global

Reference13 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3