Investigation of Various Dimensionality Reduction and Feature Selection Techniques in Microarray Gene Data for Renal Cancer Diagnosis

Author:

N. Bharanidharan1,S. R. Sannasi Chakravarthy2ORCID,V. Vinoth Kumar1,Aggarwal Pratham1,Rajaguru Harikumar2ORCID

Affiliation:

1. School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore, India

2. Department of Electronics and Communication Engineering, Bannari Amman Institute of Technology, Sathyamangalam, India

Abstract

Renal cancer is among the top 10 cancers in both genders. Microarray gene expression data is one of the effective modalities to diagnose renal cancer. The main objective of this work is to label the gene expression sample as either normal or clear cell renal cell carcinoma. To improve the classification performance and reduce the training time of the above-mentioned supervised classifiers, various feature selection and dimensionality reduction techniques are investigated. Feature selection techniques, namely variance filter, chi-square test, ANOVA test, and mutual information filter, are tested. In addition, principal component analysis, independent component analysis, and linear discriminant analysis are evaluated as dimensionality reduction techniques. Highest balanced accuracy score of 91.6% is attained for support vector machine classifier while it was increased to 94.4% through the usage appropriate dimensionality reduction or feature selection technique.

Publisher

IGI Global

Reference13 articles.

1. Artificial Intelligence in Cancer Research and Precision Medicine

2. Applications of Machine Learning in Cancer Prediction and Prognosis

3. CuMiDa: An Extensively Curated Microarray Database for Benchmarking and Testing of Machine Learning Approaches in Cancer Research

4. Howlader, N., Noone, A. M., Krapcho, M., Miller, D., Brest, A., Yu, M., Ruhl, J., Tatalovich, Z., Mariotto, A., Lewis, D. R., Chen, H. S., Feuer, E. J., & Cronin, K. A. (2023, July 10). SEER Cancer Statistics Review 1975-2016. National Cancer Institute. https://seer.cancer.gov/csr/1975_2016/

5. Renal cell carcinoma

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3