Mutation-Based Glow Worm Swarm Optimization for Efficient Load Balancing in Cloud Computing

Author:

Singh Avtar1ORCID,Kashyap Shobhana1ORCID

Affiliation:

1. National Institute of Technology, Jalandhar, India

Abstract

Cloud computing has evolved as an innovation that facilitates tasks by dynamically distributing virtual machines. User has to pay for the resources as per the demand. This is a challenging task for cloud service providers. The problems caused in load balancing are selecting random solutions, low speed convergence and picking up the original optima. To attain the best result, a mutation-based glow worm swarm optimization (MGWSO) technique is proposed. With this method, the makespan is reduced for a single work set across multiple datacentres. The work is motivated to decrease the consumption of resources in dynamic contexts while simultaneously increasing their availability. The simulated result shows that the suggested load balancing method dramatically reduces makespan in comparison to mutation-based particle swarm optimization.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3