Enhancing Crypto Ransomware Detection Through Network Analysis and Machine Learning

Author:

Metilda Florence S.1,Raghava Akshay1,Yadhu Krishna M. J.1,Sinha Shreya1,Pasagada Kavya1,Kharol Tanuja1

Affiliation:

1. SRM Institute of Science and Technology, India

Abstract

Crypto ransomware presents an ever-growing menace as it encrypts victim data and demands a ransom for decryption. The increasing frequency of ransomware attacks underscores the need for advanced detection techniques. A machine learning classification model is proposed to identify ransomware families. These models utilize specific network traffic features, with a particular emphasis on analyzing the user datagram protocol (UDP) and internet control message protocol (ICMP). Importantly, this approach incorporates feature selection to enhance efficiency without compromising accuracy, resulting in reduced memory usage and faster processing times. The proposed experiment utilizes various machine learning algorithms, including decision trees and random forest, to create highly accurate models for classifying ransomware families. Furthermore, the experiment combined network traffic analysis with other sophisticated methods such as behavioral analysis and honeypot deployment to effectively scale crypto ransomware detection.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3