Comparative Analysis of Machine Learning Approaches for Antimicrobial Peptide Prediction

Author:

Madhavan Thirumurthy1,Das Sharma Anchita2ORCID,Chowdhury Subrata3ORCID,Soufiene Ben Othman4

Affiliation:

1. Department of Genetic Engineering, SRM Institute of Science and Technology, India

2. Department of Genetic Engineering, SRM Institute of Science and Technolology, India

3. Department of Computer Science and Engineering, Sreenivasa Institute of Technology and Management Studies, India

4. PRINCE Laboratory Research, University of Sousse, Tunisia

Abstract

Antimicrobial resistance (AMR) is a global issue due to improper drug use in humans and animals. Antimicrobial peptides (AMPs) show promise in targeting bacteria with minimal harm to host cells and low risk of resistance development. Machine learning enhances accuracy in predicting AMPs. Common classifiers include SVM, RF, ANN, LGBM, and DT. This review compares peptide prediction tools based on machine learning, assessing performance using cross-validation. Carefully chosen independent datasets were used to evaluate predictive efficiency. By utilizing a variety of ML methods, the best techniques for predicting Antimicrobial peptides, Antibacterial peptides, Antifungal peptides can be developed quickly

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3