Unlocking the Future of Healthcare

Author:

B. V. Baiju1,Suresh P.1ORCID,Subathra G.2,Keerthika P.1ORCID,Sadasivuni Kishor Kumar3,Logeswaran K.4ORCID

Affiliation:

1. Vellore Institute of Technology, India

2. Sathyabama Institute of Science and Technology, India

3. Qatar University, Qatar

4. Kongu Engineering College, India

Abstract

Personalized medicine leverages patient-specific biological data to tailor prevention, diagnosis, and treatment. Biomarkers are critical for enabling this precision approach. However, biomarker development faces challenges in discovery, validation, and robust modelling, often requiring extensive labelled data. Machine learning (ML) methods like few-shot and zero-shot learning offer potential solutions by enabling model generalization from limited examples. This chapter provides comprehensive exploration of biomarker types and applications and how few-shot and zero-shot techniques could enhance biomarker prediction tasks. Few-shot learning shows promise for biomarker discovery and validation by transferring knowledge from established biomarkers. Zero-shot learning provides opportunities to detect novel biomarker candidates unconstrained by predefined labels. While nascent, few-shot and zero-shot learning present intriguing paradigms for more efficient biomarker modelling, which could accelerate progress towards personalized medicine.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3