Affiliation:
1. BMIT Institute, Solapur, India
Abstract
This chapter explores the growing applications of deep learning (DL) in the field of ophthalmology. Specifically, it examines the integration and efficacy of DL systems in enhancing patient outcomes, particularly in the diagnosis and management of conditions such as diabetic retinopathy, age-related macular degeneration, and retinopathy of prematurity. It also outlines how DL algorithms are employed to analyze complex datasets and retinal images, enabling early detection, precise diagnosis, and effective treatment strategies. This chapter also addresses the challenges inherent in integrating AI into clinical practice, including issues related to data bias, algorithmic reliability, ethical concerns, and the need for diverse, representative datasets. It proposes a roadmap for the responsible implementation of DL in ophthalmology, emphasizing the importance of continuous research, development, and ethical considerations. Overall, this chapter presents a vision where these technologies not only enhance clinical practice but also promote improved health outcomes in the field of eye care.
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献