Predicting Landslides With Deep Neural Networks and Transfer Learning in Geospatial Analysis

Author:

Gandhimathi 1ORCID,Jaya Varshini 1,Sivadharshini M.1

Affiliation:

1. Velammal College of Engineering and Technology, India

Abstract

This chapter presents an innovative approach to landslide prediction utilizing deep neural networks (DNNs) and transfer learning in geospatial analysis. Landslides pose significant threats to communities and infrastructure, necessitating accurate prediction models for timely mitigation efforts. Transfer learning is employed to enhance model generalization by pre-training on a related task and fine-tuning on landslide-specific data. The proposed framework demonstrates superior predictive performance compared to traditional methods, showcasing its efficacy in identifying landslide-prone areas. Comprehensive experiments on diverse geographic regions have been validated to prove the model's robustness across different terrains. It offers a promising avenue for early warning systems and proactive risk management in regions vulnerable to landslides. This work contributes to the evolving field of geospatial analysis and disaster resilience, providing a valuable tool for authorities and stakeholders in safeguarding lives and infrastructure.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3