Hyperparameters and Tuning Methods for Random Forest Using Python Sklearn Package Relevant to Psychology Studies

Author:

Uludag Kadir1ORCID

Affiliation:

1. Shanghai Jiao Tong University Mental Health Center, China

Abstract

Machine learning (ML) is used to create well-functioning prediction models for predicting the prognosis of psychiatric disease or to distinguish the disease from other psychiatric diseases such as distinguishing schizophrenia from methamphetamine addiction. Parameter tuning is necessary to create optimum machine learning (ML) models that successfully produce solutions for classification or regression problems. ML methods such as random forest (RF) and support vector machine (SVM) are commonly used in prediction studies in both psychology and psychiatry literature for solving various complex problems. However, studies are not consistent in terms of ML methods since they may adopt different hyperparameter tuning strategies, or they may not report their use of the ML method. For example, some researchers may use autotuning ML methods while others may prefer designing the code by themselves without using default values of automatically designed ML methods. Thereby, it is important to identify and explain the methodologic aspects of the ML method to have a reproducible output.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3