Two-Dimensional Automatic SSA Domain Multi-Modal Deep Neural Network for Detection of COVID-19 From Lung Ultrasound Images

Author:

Muralidharan Neha1,Gupta Shaurya1,Gade Anurag2,Prusty Manas Ranjan1ORCID,Tripathy Rajesh Kumar2ORCID,Pachori Ram Bilas3

Affiliation:

1. Vellore Institute of Technology, Chennai, India

2. BITS Pilani, Hyderabad, India

3. Indian Institute of Technology, Indore, India

Abstract

This chapter proposes an image decomposition-based multi-modal deep convolutional neural network (CNN) for the automated detection of COVID-19 using ultrasound images. The two-dimensional (2D) automatic-singular spectral analysis (Auto-SSA) is introduced to decompose ultrasound images into four modes or sub-images. The obtained modes are then used as input to the proposed multi-modal CNN model for COVID-19 detection. The performance of the proposed model is assessed on a dataset consisting of 3710 ultrasound images. The classification schemes such as COVID-19 versus pneumonia versus other ailments and COVID-19 versus pneumonia versus healthy are considered in this work. The proposed multi-modal deep CNN has obtained the maximum accuracy values of 100% and 99.87% for COVID-19 versus pneumonia versus other ailments-based classification schemes using 5-fold cross-validation (CV) and hold-out validation techniques.

Publisher

IGI Global

Reference53 articles.

1. AbiyevR. H. (2021, November24). https://www.hindawi.com/journals/mpe/2021/3281135/

2. Diagnostic use of lung ultrasound compared to chest radiograph for suspected pneumonia in a resource-limited setting

3. The estimation of diagnostic accuracy of tests for COVID-19: A scoping review

4. Accelerating Detection of Lung Pathologies with Explainable Ultrasound Image Analysis

5. CS343. (n.d.). Neural networks - colby college. Retrieved April 9, 2022, from https://cs.colby.edu/courses/F19/cs343/lectures/lecture11/Lecture11Slides.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3