Algorithmic Issues, Challenges, and Theoretical Concerns of ChatGPT

Author:

Patil Pradnya1ORCID,Kulkarni Kaustubh2ORCID,Sharma Priyanka3ORCID

Affiliation:

1. K.J. Somaiya Institute of Technology, Mumbai, India

2. K.J. Somaiya College of Engineering, Somaiya University, Mumbai, India

3. Swami Keshvanand Institute of Technology, Management, and Gramothan, India

Abstract

Large language model (LLM) ChatGPT has made tremendous progress in natural language processing (NLP), especially in human-quality text production, multilingual translation, and content creation. However, because of its extensive use, algorithmic issues, challenges, and theoretical queries come up. Fairness, bias, explainability, generalization, originality, inventiveness, and safety are the main topics of this study's examination of ChatGPT's intricate theoretical and algorithmic components. It looks into the possibility of explainability, transferability, generalization, bias in the data, and the model's capacity to provide original and imaginative content. It also covers possible issues including harmful use, disseminating incorrect information, and offensive or misleading content. These limitations can be addressed so that ChatGPT can be improved to provide LLMs that are more dependable, accountable, and long-lasting while posing no needless risks.

Publisher

IGI Global

Reference40 articles.

1. On the Dangers of Stochastic Parrots

2. Man is to computer programmer as woman is to homemaker. Debiasing word embeddings.;T.Bolukbasi;Advances in Neural Information Processing Systems,2016

3. Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., & Amodei, D. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems.

4. End-to-End Object Detection with Transformers

5. Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. NAACL HLT 2019 - 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - Proceedings of the Conference. ACL.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3