Impacts of Climate Changes on Traffic Flows Using Geospatial Data Analysis

Author:

Claver Jimbo Henri1,Perin Nagueu Djambong Lionel2,Thomas Bouetou2,Paul Tchoua3

Affiliation:

1. Samarkand International University of Science and Technology, Uzbekistan

2. University of Yaounde, Cameroon

3. University of Ngoundere, Cameroon

Abstract

This chapter explores the complex interplay between climate change and the accuracy of traffic flow predictions, focusing on the crucial use of geospatial data analysis. The potential effects of extreme weather events, such as heavy precipitation, storms, and heat waves, on traffic patterns should be considered to improve the robustness of traffic management systems. In this study, the authors demonstrate the effectiveness of geospatial data analysis in considering climatic and environmental variables to improve the accuracy of traffic flow forecasts. By integrating data into predictive models, we provide tangible evidence of the impacts of climate change on urban traffic patterns. The results obtained from data and simulations on machine learning models such as Lasso regression, random forest, XGboost and LTSM gave us very good results. prediction performance on the random forest with a correlation coefficient of 0.94; an RMSE of 265 and a MAE of 279 thus demonstrating its effectiveness for predicting traffic flow.

Publisher

IGI Global

Reference15 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3