Introduction to Geospatial Data and Python Programming

Author:

Shanmugapriyaa D.1,Sujithra M.1,Senthilkumar B.2ORCID,Sachin Kumar V.1,Sanjai Ram1

Affiliation:

1. Coimbatore Institute of Technology, India

2. Kumaraguru College of Technology, India

Abstract

Utilising geographical linkages, predictive modelling, and problem-solving techniques, geospatial analysis is an essential discipline in many businesses. This chapter explores the deep meaning of geographical data and how machine learning can benefit from it. Geospatial data, derived from sources such as GPS devices and satellite pictures, serves as the basis for comprehending infrastructure, topography, weather, and population dynamics. Crowdsourced information and open data projects enhance the data set available for research. By addressing issues like dimensionality reduction and missing data, spatial data preparation ensures the quality and diversity of data sources. Geospatial analysis is improved for a variety of applications using machine learning algorithms, which include supervised, unsupervised, and reinforcement learning techniques. Temporal dynamics, as examined by methods such as ARIMA and LSTM networks, track variations within regions. Ethical considerations, efficient data visualization, and data fusion techniques all contribute to thorough.

Publisher

IGI Global

Reference10 articles.

1. Balla, D. (2017). Possibilities of spatial data visualization with web technologies for cognitive interpretation. Research Gate.

2. Capata, A. (2016). AIS Data Visualization for Maritime Spatial Planning (MSP). Research Gate.

3. Fernando, J. (2018). The Spatial-Perceptual Design Space: A New Comprehension for Data Visualization. Research Gate.

4. Huang, B. (2010). An integration of GIS, virtual reality and the Internet for visualization, analysis and exploration of spatial data. Research Gate.

5. Koperski, K2019). Spatial Data Mining. Progress and Challenges Survey paper.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3