Optical Character Recognition (OCR) Using Opencv and Python

Author:

Kumar A. V. Senthil1ORCID,M. Ajay Karthick1,Bader Ahmad Fuad Hamadah2,Kaur Gaganpreet3,Ray Samrat4,G. Prasanna Lakshmi5,Virparia Paresh6,Sagar Bharat Bhushan7,Dutta Amit8,Masadeh Shadi R9,Dulhare Uma N.10ORCID,Srinivasulu Asadi11

Affiliation:

1. Hindusthan College of Arts and Science, India

2. Jadara Universty, Jordan

3. Chitkara University, India

4. Peter the Great Saint Petersburg Polytechnic University, Russia

5. Sandip University, India

6. Sardar Patel University, India

7. Harcourt Butler Technical University, India

8. All India Council for Technical Education, India

9. Isra University, Jordan

10. Muffakham Jah College of Engineering and Technology, India

11. University of Newcastle, Australia

Abstract

Optical character recognition (OCR) stands as a transformative technology at the intersection of computer vision and document processing. This chapter explores the advancements and challenges in OCR, focusing on methods for extracting text content from images, scanned documents, and other visual media. The review encompasses traditional techniques, such as template matching and feature-based methods, as well as state-of-the-art deep learning approaches. The evolution of OCR algorithms is discussed in the context of their applications in digitizing historical archives, automating data entry, enhancing accessibility, and facilitating language translation. Additionally, attention is given to challenges related to diverse fonts, handwriting recognition, and handling complex document layouts. The chapter concludes with an outlook on emerging trends and future directions in OCR research, emphasizing the ongoing pursuit of accuracy, robustness, and efficiency in extracting textual information from visual data.

Publisher

IGI Global

Reference23 articles.

1. Aishwarya. (2023). Introduction to Recurrent Neural Network. https://www.geeksforgeeks.org/recurrent-neural-networks-explanation/?ref=lbp

2. A complete Bangla OCR system for printed characters.;M. M.Alam;Journal of Cases on Information Technology,2010

3. Alind Gupta. (2023). Recurrent Neural Network Explanation. https://www.geeksforgeeks.org/introduction-to-recurrent-neural-network/

4. Amit, T. (2023). Analysis and Benchmarking of OCR Accuracy for Data Extraction Models. Academic Press.

5. Eikvil, L. (1993). Optical character recognition. Academic Press.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3