Enhancing Human-Computer Interaction Through Vision-Based Hand Gesture Recognition

Author:

Margaret T. A. Swetha1ORCID,Devi D. Renuka1ORCID

Affiliation:

1. Stella Maris College (Autonomous), India

Abstract

This study addresses the growing significance of hand gesture recognition systems in fostering efficient human-computer interaction. Despite their versatility, existing visual systems encounter challenges in diverse environments due to lighting and background complexities. With rapid advancements in computer vision, the demand for robust human-machine interaction intensifies. Hand gestures, as expressive conveyors of information, find applications in various domains, including robot control and intelligent furniture. To overcome limitations, the authors propose a vision-based approach leveraging OpenCV and Keras to construct a hand gesture prediction model. This dataset is comprehensive, encompassing all requisite gestures for optimal system performance. The chapter demonstrates the precision and accuracy of the proposed model through validation, showcasing its potential in real-world applications. This research contributes to the broader landscape of enhancing human-computer interaction through accessible and reliable hand gesture recognition systems.

Publisher

IGI Global

Reference18 articles.

1. Single Shot Detector CNN and Deep Dilated Masks for Vision-Based Hand Gesture Recognition From Video Sequences

2. Artificial Intelligence Regulation: a framework for governance

3. HaGRID—HAnd Gesture Recognition Image Dataset.;A.Kapitanov;Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision,2024

4. mIV3Net: modified inception V3 network for hand gesture recognition

5. LópezL. I. B. (2024). CNN-LSTM and post-processing for EMG-Based Hand Gesture Recognition. Intelligent Systems with Applications.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3