Efficient Brain Tumor Classification With Optimized Hybrid Deep Neural Networks

Author:

Sanjay V.1ORCID,Megala G.1ORCID,Balaji Vuppala2

Affiliation:

1. Vellore Institute of Technology, India

2. Vardhaman College of Engineering, India

Abstract

Segmentation is an important stage in the processing of images. Following pre-processing, segmentation methods are used to isolate the tumor region from the MRI images. It's one of the most crucial CAD procedures from the perspective of medical imaging. The challenges in segmenting the tumor area is overcome by using the semantic segmentation method, in which each pixel in an image receives a name or classification. It is used to recognize collections of pixels that stand in for different categories. Semantic Segmentation is proposed which is used to separate the tumor region and then the deep learning classification is done using Augmented Radial Basis Function Network (ARBFNs) based deep learning, Long Short Term Based Recurrent Neural Network (LSTM-RNN) methodology and Regularized Convolutional Neural Network with Dimensionally Reduction Module (RCNN-DRM) architecture. The proposed algorithm providing 95% accuracy on training data.

Publisher

IGI Global

Reference9 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3