Enhancing User Privacy in Natural Language Processing (NLP) Systems

Author:

Behera Chandan Kumar1ORCID,Lakshmi D.1ORCID,Kondurkar Isha1

Affiliation:

1. VIT Bhopal University, India

Abstract

NLP has witnessed a remarkable improvement in applications, from voice assistants to sentiment analysis and language translations. However, in this process, a huge amount of personal data flows through the NLP system. Over time, a variety of techniques and frameworks have been developed to ensure that NLP systems do not ignore user privacy. This chapter highlights the significance of privacy-enhancing technologies (differential privacy, secure multi-party computation, homomorphic encryption, federated learning, secure data aggregation, tokenization and anonymization) in protecting user privacy within NLP systems. Differential privacy introduces noise to query responses or statistical results to protect individual user privacy. Homomorphic encryption allows computations on encrypted data to maintain privacy. Federated learning facilitates collaborative model training without sharing data. Tokenization and anonymization preserve anonymity by replacing personal information with non-identifiable data. This chapter explores these methodologies and techniques for user privacy in NLP systems.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3