Solar Power Forecasting Using Machine Learning Techniques

Author:

Jain Arti1ORCID,Gupta Rajeev Kumar2ORCID,Kumar Mohit3ORCID

Affiliation:

1. Jaypee Institute of Information Technology, Noida, India

2. Pandit Deendayal Energy University, India

3. National Institute of Technology, Hamirpur, India

Abstract

The world faces a major global issue of increasing global warming and energy demands. There is an increasing need for renewable and eco-friendly energy sources that produce little greenhouse emissions. Hydro projects need a massive investment; likewise, wind energy is limited to coastal regions. Solar energy investments offer the same or even more benefits at a considerable cost. Tackling these issues, this chapter presents a comprehensive approach for predicting solar power generation using machine learning techniques. The study uses a dataset of 21 meteorological features, the critical being temperature ranges. Various visualization techniques are employed to understand the nature of variables. Preprocessing methods, such as removing constant and duplicate features, and handling data imbalance using SMOTE are applied. Three machine learning regression models—linear regression, elastic net regression, and random forest regression—are compared to identify the best-performing method. Through extensive testing, the study achieved an R2 score of 0.964.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3