Trustworthy AI in Healthcare

Author:

Bishnu Partha Sarathi1ORCID

Affiliation:

1. Birla Institute of Technology, Mesra, India

Abstract

The rapid integration of artificial intelligence (AI) into medical informatics, particularly in the context of mental health data, can bring about significant transformations in healthcare decision-support systems. However, ensuring that AI gains widespread acceptance and is regarded as reliable in healthcare requires addressing critical issues concerning its robustness, fairness, and privacy. This chapter presents a comprehensive study that delves into the urgent need for dependable AI in medical informatics, explicitly focusing on collecting mental health data using sensors. The authors put forth a methodological framework combining cutting-edge AI techniques, leveraging deep learning models such as recurrent neural networks (RNN), including variants like LSTM and GRU, and ensemble techniques like random forest, AdaBoost, and XGBoost. Through a series of experiments involving healthcare decision support systems, the authors underscore the pivotal role of model overfitting in establishing trustworthy AI systems.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3