Impact of Pairwise Electrode Features in the Classification of Emotions for EEG Signal Analysis

Author:

Suchetha M.1,Rama Raghavan V. V.2,Fardeen Shaik2,Nithish P. V. S.2,Preethi S.1,Edwin Dhas D.1

Affiliation:

1. Centre for Healthcare Advancement, Innovation, and Research, Vellore Institute of Technology, Chennai, India

2. Vellore Institute of Technology, Chennai, India

Abstract

Emotion recognition is the capacity to recognize and interpret an individual's emotional state through a variety of techniques, one of which is the detection and interpretation of patterns of brain activity linked to specific emotional states. Applications for emotion recognition are numerous and include human-computer interaction, marketing research, and mental health diagnosis. Electroencephalography (EEG) signals are another name for the patterns of brain activity. To extract features from EEG waves, many techniques have been used. The wavelet transform (WT), differential entropy (DE), statistical features (SF), and convolutional neural network (CNN) are some of the feature extraction techniques performed. This proposed method utilizes a custom CNN model to train and test on the preprocessed SEED data.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3