Cloud-Enhanced Machine Learning for Handwritten Character Recognition in Dementia Patients

Author:

Hasnain Muhammad1,Gude Venkataramaiah2ORCID,Edeh Michael Onyema3ORCID,Masood Fahad1,Khan Wajid Ullah1,Imad Muhammad4ORCID,Fidelia Nwosu Ogochukwu5

Affiliation:

1. Abasyn University, Pakistan

2. GP Technologies LLC, USA

3. Coal City University, Nigeria & Saveetha School of Engineering, SIMATS, Chennai, India

4. Abasyn University, Peshawar, Pakistan

5. University of Nigeria, Nigeria

Abstract

The study addresses the challenge dementia patients face in recognizing handwritten characters by developing a cloud-integrated system that uses a multilayer neural network for character recognition. The system involves four main steps: preprocessing (noise reduction and normalization), segmentation (extracting characters from scanned pages), feature extraction (using a modified zone-based method), and recognition. The extracted features, represented as pixel value vectors, are classified using four machine learning algorithms—support vector machine with RBF, random forest, linear SVM, and logistic regression. The random forest algorithm performs best with an accuracy of 89%. Cloud technology enhances the system's scalability, allowing for real-time processing and remote access, beneficial for dementia care.

Publisher

IGI Global

Reference20 articles.

1. Alzheimer's Association. (2020). Alzheimer’s and Dementia disease facts and figures. Wiley. https://alz-journals.onlinelibrary.wiley.com/doi/full/10.1002/alz.12068.

2. Recognition of Bengali Handwritten Characters Using Skeletal Convexity and Dynamic Programming

3. Spatial features for handwritten Kannada and English character recognition;B. V.Dhandra;International Journal of Computer Applications,2010

4. English character recognition.;Dhandra;International Journal of Computer Applications,2010

5. Farsi handwritten digit recognition based on mixture of RBF experts

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3