An Innovative Investigation on Predicting Forest Fire Using Machine Learning Approach

Author:

Ramalingam Renugadevi1

Affiliation:

1. R.M.K. Engineering College, India

Abstract

Predicting forest fire occurrences can bolster early detection capabilities and improve early warning systems and responses. Currently, forest and grassland fire prevention and suppression efforts in China face significant hurdles due to the complex interplay of natural and societal factors. While existing models for predicting forest fire occurrences typically consider factors like vegetation, topography, weather conditions, and human activities, the moisture content of forest fuels is a critical aspect closely linked to fire occurrences. Additionally, it introduces forest fuel-related factors, including vegetation canopy water content and evapotranspiration from the top of the vegetation canopy, to construct a comprehensive database for predicting forest fire occurrences. Furthermore, the study develops a forest fire occurrence prediction model using machine learning techniques such as the random forest model (RF), gradient boosting decision tree model (GBDT), and adaptive augmentation model (AdaBoost).

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3